A New Interpolatory Subdivision for Quadrilateral Meshes

نویسندگان

  • Guiqing Li
  • Weiyin Ma
  • Hujun Bao
چکیده

This paper presents a new interpolatory subdivision scheme for quadrilateral meshes based on a 1–4 splitting operator. The scheme generates surfaces coincident with those of the Kobbelt interpolatory subdivision scheme for regular meshes. A new group of rules are designed for computing newly inserted vertices around extraordinary vertices. As an extension of the regular masks,the new rules are derived based on a reinterpretation of the regular masks. Eigen-structure analysis demonstrates that subdivision surfaces generated using the new scheme are C1 continuous and, in addition, have bounded curvature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal C Two-dimensional Interpolatory Ternary Subdivision Schemes with Two-ring Stencils

For any interpolatory ternary subdivision scheme with two-ring stencils for a regular triangular or quadrilateral mesh, we show that the critical Hölder smoothness exponent of its basis function cannot exceed log3 11(≈ 2.18266), where the critical Hölder smoothness exponent of a function f : R2 → R is defined to be ν∞(f) := sup{ν : f ∈ Lip ν}. On the other hand, for both regular triangular and ...

متن کامل

Optimal C2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils

For any interpolatory ternary subdivision scheme with two-ring stencils for a regular triangular or quadrilateral mesh, in this paper we show that the critical Hölder smoothness exponent of its basis function cannot exceed log3 11(≈ 2.18266), where the critical Hölder smoothness exponent of a function f : R2 7→ R is defined to be ν∞(f) := sup{ν : f ∈ Lip ν}. On the other hand, for both regular ...

متن کامل

An Approximating-Interpolatory Subdivision scheme

In the last decade, study and construction of quad/triangle subdivision schemes have attracted attention. The quad/triangle subdivision starts with a control mesh consisting of both quads and triangles and produces finer and finer meshes with quads and triangles (Fig. 1). Designers often want to model certain regions with quad meshes and others with triangle meshes to get better visual quality ...

متن کامل

Matrix-valued Symmetric Templates for Interpolatory Surface Subdivisions, I: Regular Vertices

The objective of this paper is to introduce a general procedure for deriving interpolatory surface subdivision schemes with “symmetric subdivision templates” (SSTs) for regular vertices. While the precise definition of “symmetry” will be clarified in the paper, the property of SSTs is instrumental to facilitate application of the standard procedure for finding symmetric weights for taking weigh...

متن کامل

Refinable bivariate quartic and quintic C2-splines for quadrilateral subdivisions

Refinable compactly supported bivariate C quartic and quintic spline function vectors on the four-directional mesh are introduced in this paper to generate matrix-valued templates for approximation and Hermite interpolatory surface subdivision schemes, respectively, for both the √ 2 and 1-to-4 split quadrilateral topological rules. These splines have their full local polynomial preservation ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2005